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Abstracts: In response to the issue of limited new energy output leading to poor smoothing effects on grid-connected load 6 

fluctuations, this paper proposes a load power smoothing method based on "one source multiple loads." The method 7 

comprehensively considers the proximity of the source and load, as well as the correlation between their power fluctuations, 8 

using this as a tracking evaluation standard for source-side and different load-side matching in regional power grids. Initially, 9 

loads are clustered and divided based on power frequency division. The EEMD algorithm is then applied to obtain wind and 10 

solar energy outputs with greater complementarity and smoother fluctuations, leveraging their low-frequency correlation. 11 

Subsequently, a load tracking coefficient is used to compare the matching degree between wind-solar power output and 12 

different loads, selecting the most compatible load and output for source-load matching and smoothing. Concurrently, a gray 13 

wolf optimization algorithm based on Tent-chaotic mapping is employed to optimize edge energy storage at different load 14 

sides, minimizing overall grid-connected load power fluctuations. Numerical results demonstrate that the proposed method 15 

can fully utilize the stable output from the low-frequency correlation of wind and solar energy, combined with energy storage, 16 

to significantly reduce the fluctuation rate of regional grid-connected loads. This effectively promotes local absorption of 17 

source loads, thereby alleviating the pressure on the grid side caused by the randomness and volatility on both sides of the 18 

source load. 19 

Keywords: Load Power smoothing, Source-Load matching, EEMD Algorithm, grid stability, grid stabilization strategy 20 

1. Introduction 21 

In response to China's dual carbon goals, new power systems utilizing renewable energy sources like wind and photovoltaic 22 

are rapidly advancing. The installed capacity of wind turbines and photovoltaic units, crucial components of renewable 23 

energy, is growing (Xi, 2020; Gao, 2022). However, both wind and photovoltaic power generation are highly volatile and 24 

stochastic, leading to increased pressure on grid-side dispatch when parallelized with traditional load demands (Qu and Ye, 25 

2023; Lee and Baldick, 2017; Ma et al., 2020; Oh and Son, 2022; Li et al., 2022). Often, the installed capacity of wind-solar 26 

units in a region is insufficient to meet local load demands, or their utilization is limited, resulting in low efficiency in 27 

suppressing load fluctuations. 28 

Despite these challenges, the consistency of regional source-load fluctuations can be leveraged to improve local consumption 29 
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of wind-solar power and reduce grid-side pressure from load power fluctuations, which is crucial for regional grid-connected 30 

dispatch. One effective strategy is the use of wind-solar correlation for regional power suppression, which has been 31 

extensively studied (Liang et al., 2023; Hu et al., 2024; Xie et al., 2017; Tan et al., 2022; Dong et al., 2018; Haensch et al., 32 

2024; Wang et al., 2020; Zhao et al., 2020). By considering the complementary characteristics of wind and solar power, 33 

volatility and randomness in original output can be reduced. For instance, typical wind-solar output scenarios can be 34 

generated based on wind-solar correlation, aiding in optimal scheduling for microgrids. 35 

The traditional energy optimization dispatching strategy is distinct from the source-load matching strategy, which focuses on 36 

regional renewable energy consumption and grid-connected power fluctuation reduction. Source-load matching is 37 

implemented based on evaluating the load tracking degree, which considers the smoothness of the load tracking and residual 38 

load curve (Zhu et al., 2024). To enhance load tracking, different tracking coefficient models are established based on the 39 

overall system fluctuation's smoothness (Shi et al., 2023; Mitrofanov and Baykasenov, 2022; Beluco et al., 2008). 40 

Additionally, the Copula function can evaluate source-load matching, inverting the energy side's complementary 41 

characteristics (Ren et al., 2024). However, these methods are often limited to considering power differences or fluctuation 42 

similarities between the source and load, or they only address matching between single power and load sides. 43 

In this paper, we propose a source-load matching strategy based on wind-solar complementarity and the "one source, 44 

multiple loads" concept. We prioritize the more stable low-frequency output of wind-solar to match load power fluctuations 45 

according to load tracking criteria. We also optimize the edge storage charging and discharging strategy for each load group 46 

using the gray wolf optimization algorithm with Tent-chaotic mapping, aiming to minimize overall load fluctuation in 47 

regional grid connections and reduce power fluctuations on both sides of the grid. 48 

Unlike current research on microgrid or regional source-load matching models, which typically consider a single power side 49 

and a single load group, this paper delves deeper into the impact of different power-side suppression abilities on various load 50 

groups, influencing regional grid fluctuations. We construct a "one source, multiple load" regional grid framework, utilizing 51 

a typical wind-solar co-generation plant and multiple load groups with edge storage. K-medoid clustering is used to 52 

categorize loads into groups with typical energy use characteristics. Based on the complementary low-frequency correlation 53 

of wind-solar power, the source-side power output is smoothed. The proposed load tracking index is then employed to track 54 

load-side power fluctuations, reducing regional grid-connected power fluctuations. 55 

The framework of "the one source, many loads" regional grid is shown in Fig.1. 56 

 57 
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 58 
Fig.1 "One source with multi-load" regional power grid framework 59 

The specific steps of power leveling are shown in Fig.2. 60 

 61 

 62 
Fig.2 Flow chart of regional source-load matching and stabilizing method 63 

The primary contribution of this paper is as follows: 64 

 Frequency decomposition of the daily wind-solar output, correlation analysis of the decomposed low-frequency 65 

components and obtaining a typical daily scenario set of wind-solar low-frequency output, use Euclidean distance to judge 66 

the scenario set scenario and the original output of the corresponding day, and select the closest day as the replacement of the 67 

output of that day. 68 

 The load is clustered based on the rough K-means of variational firefly optimization. The load tracking evaluation 69 

criteria proposed in this paper are used to compare the matching degree between the output scenario and each load group. 70 

The load group with the highest source-load matching degree is selected as the output satisfaction object for that day. 71 

 The gray wolf optimization algorithm based on Tent-chaotic mapping is used to optimize each load-side edge 72 

energy storage leveling strategy to minimize the fluctuation of regional grid-connected load, promote the level of wind-solar 73 

consumption, and reduce the pressure of grid-side dispatch. 74 
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2. Source-Load Matching for Regional Wind-solar Systems 75 

2.1 CEEMD-Based Wind-Solar Output Frequency Decomposition 76 

In this paper, based on the previous study (Mahdavi et al., 2023), we further study the smoothing effect of the source-side 77 

power output on the load-side fluctuation. Based on not changing the capacity configuration in the original region, the 78 

obtained typical daily scenario set of wind-solar power output and the load scenario is source-load matched to achieve the 79 

power fluctuation smoothing on the regional grid connection. 80 

To better achieve the decomposition effect, this paper adopts the CEEMD (complementary ensemble empirical mode 81 

decomposition, CEEMD) algorithm to decompose the frequency of the original wind-solar output data. CEEMD has the 82 

characteristics of independent homogeneous distribution and opposite sign for the white noise added to the original signal for 83 

the auxiliary decomposition. It can compensate for the shortcomings of modal mixing in the traditional empirical mode 84 

decomposition (EMD) while better reducing the noise remaining in the original signal and decomposition errors (Liu et al., 85 

2024). The specific decomposition steps are as follows: 86 

1) Add a positive and negative pair of random Gaussian white noise, respectively, to the original sequence under: 87 

( ) ( ) ( )X t x t tµ+ += +                                                                                 (1) 88 

( ) ( ) ( )X t x t tµ− −= +                                                                                 (2) 89 

where 𝑋𝑋+(𝑡𝑡), 𝑋𝑋−(𝑡𝑡) are the sequences after adding positive and negative random Gaussian white noise𝜇𝜇+(𝑡𝑡), 𝜇𝜇−(𝑡𝑡) 90 

respectively. 91 

2) EMD decomposition of the newly generated signal to obtain the inherent modal functions (IMF) components of 92 

each order: 93 

1
( ) ( ) ( )

m

i
i

X t c t r t+ + +

=

= +∑
                                                                             

(3) 94 

i
1

( ) ( ) ( )
m

i
X t c t r t− − −

=

= +∑
                                                                             

(4) 95 

where 𝑐𝑐𝑖𝑖+(𝑡𝑡), 𝑐𝑐𝑖𝑖−(𝑡𝑡)are the i-th IMF component of the decomposition,𝑟𝑟+(𝑡𝑡), 𝑟𝑟−(𝑡𝑡)are the remaining terms of the 96 

decomposition. 97 

3) Repeat the above steps n times. Each repetition adds a new and different sequence of paired Gaussian white noise. 98 

4) Summing the IMF components obtained from each repetition to take the mean value as the final decomposition 99 

result. The final𝑐𝑐𝑖𝑖(𝑡𝑡)and𝑟𝑟(𝑡𝑡)are expressed as follows: 100 
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2

n

i ji ji
i

c t c t c t
n

+ −

=
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                                                                          (5) 101 

1

1( ) ( ( ) ( ))
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+ −

=
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                                                                            (6) 102 

where𝑐𝑐𝑗𝑗𝑖𝑖+(𝑡𝑡), 𝑐𝑐𝑗𝑗𝑖𝑖−(𝑡𝑡) are the i-th IMF component obtained from the decomposition at the j-th repetition;𝑟𝑟𝑗𝑗+(𝑡𝑡), 𝑟𝑟𝑗𝑗−(𝑡𝑡) are the 103 

residuals obtained from the decomposition at the j-th repetition; 𝑐𝑐𝑖𝑖(𝑡𝑡)  is the i-th IMF component from the final 104 

decomposition; 𝑟𝑟(𝑡𝑡) is the remaining amount from the final decomposition. 105 

2.2 Rough Load Clustering Optimized By Mutation Firefly Algorithm 106 

This paper uses a variational strategy and a firefly algorithm with differential evolution to optimize the traditional clustering 107 

algorithm (Wei et al., 2023). The rough K-means algorithm is an improvement of the classical K-means algorithm, and the 108 

difference is that the algorithm divides the sample objects that cannot be determined into the boundary set of the class. The 109 

division is based on the presence or absence of other clustering centers with a difference between the distance and the 110 

minimum distance from the sample object less than a given threshold. 111 

The core concepts of rough set theory are upper approximation and lower approximation rather than boundary domain, and 112 

the variation of the number of objects in the lower approximation and boundary set and the variability of object distribution 113 

dynamically adjust the center-of-mass weights. The relative distances are: 114 

( )
( )

' ,
:

,
n k

n h

d x m
T t h k

d x m
ξ

  = ≤ ∧ ≠ 
                                                                         

(7) 115 

The variant firefly optimization algorithm makes full use of the information of individual firefly populations through a 116 

double variant strategy, which significantly improves the ability of the algorithm to jump out of the local optimum and to 117 

converge to the global optimum with probability one under a large enough number of iterations. The new objective function 118 

value is constructed as the firefly light intensity for the initial clustering centroid search, and the optimal solution found by 119 

the firefly algorithm is used as the clustering center of the algorithm for clustering iterations: 120 

( ) OI f x
I

λ
 = =  
                                                                                    

(8) 121 

where I is the intra-class distance, which is the sum of the distances from each data sample in each class to its cluster center; 122 

O is the inter-class distance, which is the distance between the cluster centers; when 𝜆𝜆 ≥ 1, the data may be out of range if 123 

the number of samples and the number of dimensional bases are large, and 𝜆𝜆 = 1/2 is taken in this study. 124 
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2.3 Load Tracking Evaluation Criteria 125 

This paper considers the proximity of source-load power magnitude and the correlation degree of source-load power 126 

fluctuation as the evaluation criteria of source-side load tracking. Based on the fact that Spearman's coefficient and 127 

Euclidean distance present complementary advantages and disadvantages in measuring correlation, Euclidean distance, and 128 

rank correlation coefficient are used to calculate them, respectively. The following equation is shown: 129 

1 1 2 2max i i iθ α δ α δ= +                                                                                (9) 130 

where 𝜃𝜃𝑖𝑖 is thematch between the source-side output and the i-th load group; 𝛿𝛿1
𝑖𝑖  is the tracking coefficient between the 131 

source-side output and the i-th load group; 𝛿𝛿2
𝑖𝑖  is the correlation between the normalized source-side output and the i-th load 132 

group; 𝛼𝛼1and 𝛼𝛼2are the weight coefficients of the corresponding indicators, and the initial ratio of the two is selected as 1:1 133 

in this paper, considering their different effects on the matching degree. 134 

2

1
( )

T
i t t

i
t

P Lλ
=

= −∑
                                                                               

(10) 135 

1

1

i
i

N
n

n

λξ
λ

=

=

∑
                                                                                       

(11) 136 

where 𝑃𝑃𝑡𝑡and 𝐿𝐿𝑖𝑖𝑡𝑡  are the output power and load power of the i-th load group at moment t, respectively, T is the number of 137 

moments of that day (T=24); 𝜆𝜆𝑖𝑖and 𝜆𝜆𝑛𝑛are the source-side output and the i-th and n-th load group power Euclidean distances, 138 

respectively, for that day, and N is the number of load groups; 𝜉𝜉1
𝑖𝑖  is the power Euclidean distance between the normalized 139 

source-side output and the i-th load group: 140 

1 11i iδ ξ= −                                                                                        (12) 141 

Spearman rank correlation coefficient was used to do a correlation analysis between wind-solar low-frequency output and 142 

each load power. Spearman correlation coefficient is a non-parametric statistical method of rank correlation using monotonic 143 

equations in statistics to evaluate the correlation between two statistical variables. The basic idea is that there are three binary 144 

distributions of random vectors (𝑚𝑚1,𝑛𝑛1), (𝑚𝑚2,𝑛𝑛2), (𝑚𝑚3,𝑛𝑛3)with the difference between the probability that at least one of 145 

them occurs in concert with the other distributionsand the probability that at least one of them does not occur in concert with 146 

the other distributions as the correlation indicator describing the random variables (Wei et al., 2023), which is calculated as 147 

the following equations: 148 

2 2

1
1 [6 / ( 1)]

T

t
t

d T Tτ
=

= − −∑
                                                                          

(13) 149 
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where 𝜏𝜏 is the Spearman correlation coefficient between any two vectors; T is the vector dimension, which in this paper is 150 

the 24 time periods that divide each day in source-load matching; d is the set of element ranking differences in the two 151 

vectors. 152 

2

1

i
i

N
n

n

τδ
τ

=

=

∑
                                                                                       

(14) 153 

To make a uniform distance and correlation variation relationship, where 𝜏𝜏𝑖𝑖and 𝜏𝜏𝑛𝑛are the correlation coefficients between 154 

the source-side output and the i-th and n-th load groups, respectively, for that day, and N is the number of load groups. 155 

According to the above load tracking evaluation criteria, the matching degree between the wind-solar system's 156 

low-frequency output and each load's power is compared, and the most matching load is selected as the target of the power 157 

leveling on that day. Among them, the wind-solar excess energy is used to charge the energy storage corresponding to the 158 

matched load. When the load is not matched with the energy output day, if the load has too much fluctuation, the energy 159 

storage according to its own SOC state and the set fluctuation threshold, the load is smoothed to a certain extent; the 160 

wind-solar output has excess energy in a specific period, the energy is used to charge the energy storage, so that on the day 161 

when the load is not matched, the energy storage has a specific scheduling interval, using renewable resources, reducing the 162 

pressure on the grid, and realizing It can be used to calm down the fluctuation of load and avoid the waste of energy that may 163 

exist when the wind-solar power is connected to the grid (Luo et al., 2021). 164 

3. Load Edge Energy Storage Suppressing Strategy 165 

In order to better achieve the overall grid-connected power fluctuation smoothing of regional loads, the charging and 166 

discharging strategies of small-capacity energy storage on each load group side are optimized by using the Gray Wolf 167 

algorithm based on Tent chaotic mapping to minimize the overall fluctuation rate of regional loads. The method proposed in 168 

this paper, compared with the traditional energy storage method, can optimize the single-period load reduction to a more 169 

detailed multi-time period reduction, avoiding the dispatch pressure on the grid after a substantial load smoothing after the 170 

load rises again during peak and valley periods, to achieve the reduction of the overall fluctuation rate. 171 

3.1 Gray Wolf Optimization Algorithm Based on Tent-chaotic Mapping 172 

Compared with the traditional particle swarm algorithm and genetic algorithm, the gray wolf algorithm has a good 173 

performance in terms of the accuracy of solving the problem and the convergence speed due to its strong convergence 174 

performance, simple structure, few parameters to be adjusted, and the ability to achieve a balance between local optimization 175 

and global search (Wei et al., 2023). This paper uses the improved Gray Wolf optimization algorithm with Tent chaotic 176 

mapping to flatten the marginal energy storage on different load sides. 177 
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The core idea of the Gray Wolf Algorithm is to mathematically model the social hierarchy of gray wolves in GWO by 178 

defining the top 3 best wolves (optimal solutions) as𝛼𝛼, 𝛽𝛽, 𝛿𝛿each, which guides the other wolves in their search toward the 179 

goal. The remaining wolves (candidate solutions) are defined as ω , and they update their position around 𝛼𝛼, 𝛽𝛽, 𝛿𝛿. 180 

Chaos has randomness and traversal and initial value sensitivity to speed up the convergence of the algorithm, generating 181 

chaotic sequences based on Tent mapping to initialize the population: 182 

1

,0

1 , 1
1

k
kI
I

k
I k

kI
I

Z Z u
uZ
Z u Z
u

+


≤ ≤= 

− ≤ −
＜

                                                                          

(15) 183 

where, k is the number of populations, I is the number of current iterations, and to maintain the randomness of the 184 

initialization information of the algorithm, u takes the value of 𝑢𝑢 ⊂ 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(0,1). Combined with the chaotic sequence 𝑍𝑍𝐼𝐼𝑘𝑘 , 185 

the further process of generating the sequence 𝑋𝑋𝐼𝐼𝑘𝑘of initial locations of individual gray wolves in the search area is as 186 

follows: 187 

( ),min ,max ,min
k k k k k
I I I I IX X Z X X= + −

                                                                   
(16) 188 

where, 𝑋𝑋𝐼𝐼,𝑚𝑚𝑟𝑟𝑚𝑚𝑘𝑘 , 𝑋𝑋𝐼𝐼,𝑚𝑚𝑖𝑖𝑛𝑛𝑘𝑘  is the maximum and minimum value of 𝑋𝑋𝐼𝐼𝑘𝑘 , respectively. 189 

A dynamic weight factor b, which changes in a linearly decreasing manner, is introduced to update the gray wolf individual 190 

step size dynamically: 191 

( ) ( )f f s
Ib I b b b

MaxIter
= − −

                                                                       
(17) 192 

where, 𝑏𝑏𝑠𝑠 , 𝑏𝑏𝑓𝑓  denotes the initial and final values of the weighting factors, respectively. 193 

A fitness scaling factor was introduced to dynamically weight the averages to differentiate head wolf contributions, thus 194 

effectively differentiating the different guiding roles of head wolf 𝛼𝛼, 𝛽𝛽, 𝛿𝛿on subsequent gray wolf individual position 195 

updates: 196 

1 2 3

1 2 3

, , 0

1 , 0
3

f f f f

ff fv v v f
f f f

v v v f

α β δ

βα δ


= + +


 = = =



= = = =


， ＞

                                                                    

(18) 197 

where, 𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3 is the adaptation scale factor; 𝑓𝑓𝛼𝛼 , 𝑓𝑓𝛽𝛽 , 𝑓𝑓𝛿𝛿  is the adaptation value of 𝛼𝛼, 𝛽𝛽, 𝛿𝛿 respectively. 198 

The fused improved position update formula is: 199 
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( ) ( )
( )

4

1 1 2 2 3 3

1X I b I r

v X v X v X

+ = ⋅ ⋅

⋅ + ⋅ + ⋅                                                                           
(19) 200 

where, 𝑟𝑟4 is a random vector between [0,1]. 201 

3.2 Edge Energy Storage Optimization Model 202 

The gray wolf optimization algorithm based on Tent-chaotic mapping is used to optimize the charging and discharging power 203 

of the edge energy storage of the remaining load groups with the objective of to minimize the fluctuation of the regional 204 

required grid leveling load to achieve the reduction of the regionally grid-connected load fluctuation. The optimization 205 

objective function is as follows: 206 

max
1

( 1) ( )min ( ) / 24
T

i i
i

t i

M t M tF
M=

+ −
= ∑

                                                                  
(20) 207 

where, 𝐹𝐹𝑖𝑖 is the overall regional load fluctuation rate on day i; 𝑀𝑀𝑖𝑖  is the overall regional load power on day i after 208 

source-load matching; 𝑀𝑀𝑖𝑖
𝑚𝑚𝑟𝑟𝑚𝑚  is the maximum load value on that day; and T is the number of moments on that day (T=24). 209 

The constraints are: 210 

1) Wind farm operation constraint 211 

max
, , , ,0 wind s t wind s tP P≤ ≤                                                                                (21) 212 

2) Photovoltaic plant operation constraint 213 

max
, , , ,0 PV s t PV s tP P≤ ≤                                                                                  (22) 214 

3) Load constraint 215 

min max
, , , , , ,LD s t LD s t LD s tP P P≤ ≤                                                                              (23) 216 

4) Energy storage constraint 217 

Energy storage charging and discharging power constraint: 218 

min max
, , , , , ,ess s t ess s t ess s tP P P≤ ≤                                                                              (24) 219 

Energy storage charge state constraint: 220 

min max
,s tSOC SOC SOC≤ ≤                                                                          (25) 221 

Energy storage discharge balance constraint: 222 
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( )
1

0
T

ess
t

P t
=

=∑
                                                                                     

(26) 223 

3.3 Energy Storage SOC Control 224 

The basic idea of energy storage leveling is: on the day when the load matches the energy source, if the load is larger than 225 

the output and fluctuates widely, energy storage discharges to level the load, and if the load is smaller than the output, energy 226 

storage charges to avoid the waste of renewable energy; at the same time, on the day when the load does not match the 227 

energy output, if the load has a significant fluctuation, energy storage, according to its own SOC state and the set fluctuation 228 

threshold, will level the load to a certain extent. To better protect the energy storage and prolong the life of the storage. 229 

In order to better protect the energy storage and prolong the life of the energy storage, it is necessary to limit the energy 230 

storage ground charge and discharge, i.e., the energy storage SOC state is limited to [0.1, 0.9]. The SOC is calculated as 231 

follows: 232 

Discharge: 233 

( )( ) (1 ) ( 1) e
soc soc

d

P t tS t S t
E

ρ
η
∆

= − − −
                                                                  

(27) 234 

Charging: 235 

( )( ) (1 ) ( 1) e c
soc soc

P t tS t S t
E

η
ρ

∆
= − − −

                                                                 
(28) 236 

where, 𝑆𝑆𝑠𝑠𝑠𝑠𝑐𝑐 (𝑡𝑡) and 𝑆𝑆𝑠𝑠𝑠𝑠𝑐𝑐 (𝑡𝑡 − 1) denote the SOC values of energy storage in period t and t-1, respectively; 𝑃𝑃𝑒𝑒(𝑡𝑡)denotes the 237 

required leveling target of energy storage in period t; 𝛥𝛥𝑡𝑡 is the length of period; 𝜌𝜌 is the self-discharge rate; 𝜂𝜂𝑟𝑟and 𝜂𝜂𝑐𝑐  238 

denote the energy storage discharge efficiency and charging efficiency, respectively; and E is the energy storage capacity. 239 

4. Experiments and Results 240 

This paper analyzes the actual output power of a 100MW wind farm and a 50MW PV co-generation farm and the actual 241 

loads of four typical load groups in the region in the summer of 2018 in a northwestern area. 242 

From the scenario generation method described in the previous section, a typical scenario of wind and solar low-frequency 243 

output power is obtained, as shown in Fig.3. 244 

They are adopting the load-tracking evaluation criteria proposed in Section 2.3. Furthermore, combined with the local 245 

weather, the daily corresponding wind power and different load groups are matched and evaluated, and the load group with 246 

the highest degree of matching is selected as the main suppression target of the wind power on that day. 247 

 248 
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 249 
(a) Generation results of wind power scenario      (b) Generation results of PV scenario 250 
Fig.3 Scenery scene generation results 251 

Table 1 shows the matching degree between source-side output and different load clusters and the original load for a 252 

particular day, where load cluster 5 is the original load before the clustering of loads. The table shows that the matching 253 

degree between source-side output and original load is less than 0.3, while the highest matching degree of the clustered load 254 

groups can reach 0.52. Therefore, this paper can effectively explore the matching degree between source-side output and 255 

typical load groups after dividing the load clusters. 256 

 257 
Table 1 Comparison of matching degrees on a certain day 258 

Load group Matching degree 

Load group 1 0.39 

Load group 2 0.31 

Load group 3 0.52 

Load group 4 0.24 

initial load 0.28 

 259 

 260 
Fig.4 Source-load matching results 261 

According to the method described in the previous paper, the matching results are shown in Fig.6, and the wind-solar output 262 

0 10 20 30 40 50 60 70 80 90 100

t/min

0

5

10

15

20

25

po
w

er
/M

W

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

0 10 20 30 40 50 60 70 80 90 100

t/min

10

15

20

25

30

35

40

45

50

55

po
w

er
/M

W

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

0 100 200 300 400 500 600

t/1h

0

10

20

30

40

50

60

Po
w

er
/M

W
 

Wind and PV power

load group1

load group2

load group3

load group4

11 
 

https://doi.org/10.5194/wes-2025-11
Preprint. Discussion started: 17 February 2025
c© Author(s) 2025. CC BY 4.0 License.



 

is based on the principle of the highest matching degree to meet different loads daily. As shown in the figure, the 263 

load-tracking evaluation criteria established in this paper can select the load with the most closely matched output among 264 

different loads for matching, reducing the grid-side pressure on both sides of independent dispatch. At the same time, the 265 

load side is split into different load groups. The wind-solar output has excess energy at a specific period, which is used to 266 

charge the energy storage so that the energy storage has a specific dispatch interval on the days when the load is not matched. 267 

The suppressing time of the energy storage can be further extended. 268 

 269 

 270 
Fig.5 Energy storage SOC state 271 

As shown in Fig.5, the SOC state of each load-side edge energy storage after optimizing the overall load fluctuation in the 272 

region using the gray wolf optimization algorithm. The figure shows that the source-load matching can provide enough 273 

energy for the energy storage to meet its required smoothing objective, and the SOC of each energy storage is maintained in 274 

the ideal interval to avoid damage to the energy storage lifetime. In this paper, the selected energy storage parameters are 275 

shown in Table 2. 276 

 277 
Table 2 Energy storage system parameters 278 

Parameter type Storage batterie 

Maximum continuous discharging power /MW 10 

Maximum continuous charging power /MW 10 

Rated capacity /MW·h 5 

Permissible depth of discharge /% 10~90 

The initial state of charge /% 60 

Self-discharge rate /(%/h) 0.6 

Charge and discharge efficiency /% 95 

 279 
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 280 
Fig.6 Load power changes before and after the suppression 281 

As shown in Fig.5, the overall load power of the region is compared with the original regional load power after adopting the 282 

method proposed in this paper; the source-load matching strategy proposed in this paper can significantly reduce the power 283 

target of the grid-side load to be leveled, and reduce the pressure of the grid-side to meet the original load. At the same time, 284 

the method in this paper makes reasonable use of the regional wind-solar power and load adjacent to the characteristics of 285 

easy scheduling, the use of source-load matching strategy to achieve the power of local consumption, used to suppress the 286 

fluctuations in the load at the same time to avoid the wind-solar power in the grid-connected energy waste situation that may 287 

exist. 288 

 289 

 290 
Fig.7 Changes in load volatility before and after smoothing 291 

As shown in Fig.7, the overall regional load fluctuation rate is compared with the original regional load fluctuation rate after 292 

adopting the proposed method in this paper. As shown in the figure, the proposed method can significantly reduce the 293 

fluctuation in the original regional load. The fluctuation of the original load can reach about 0.4, which is a tremendous 294 

pressure on the grid dispatch. However, after adopting the proposed method, the fluctuation rate of the regional load is 295 

reduced to less than 0.2, which reduces the difficulty of grid-side dispatch. 296 

To further verify the effect of the proposed method on regional load fluctuation, three scenarios are set up in this paper for 297 
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comparison. Scenario 1 is the traditional regional load suppression, i.e., the load power is all satisfied by the grid side; 298 

Scenario 2 is the wind-solar system low-frequency output power used to satisfy the load power, while the energy storage 299 

suppresses a certain amount of excess wind-solar output and load fluctuation; Scenario 3 is the proposed method. 300 

 301 

 302 
Fig.8 Comparison of Scenario 2 and Scenario 3 303 

As shown in Fig.8, the comparison between Scenario II and Scenario III is shown. As shown in the figure, compared with 304 

the direct use of wind-solar power to meet the load, the method proposed in this paper is more effective in suppressing the 305 

peak fluctuation of the load and reducing the load fluctuation rate. As scenario 2 is the direct suppression of the 306 

low-frequency output of wind-solar power, the degree of load reduction in scenario 2 is higher than that in scenario 3 at the 307 

peak of the wind-solar power, which to some extent aggravates the pressure on the grid when the load rises at the next 308 

moment. The method proposed in this paper optimizes the charging and discharging of each energy storage to minimize the 309 

overall fluctuation of the regional load when reducing the load power during the peak hours, charging the energy storage 310 

appropriately during the load valley section, and avoiding the fluctuation caused by over satisfying the low valley load. 311 

 312 

 313 
Fig.9 Power comparison in different scenarios on a day 314 

A comparison of the overall load power on the region for three scenarios on a randomly selected day is shown in Fig.9. As 315 
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shown in the figure, scenario three's overall fluctuation rate is smaller than scenario two's. The method proposed in this paper 316 

can provide overall smoothing of the split load while the remaining energy from the source-load matching is stored in the 317 

energy storage so that the load can be smoothed to some extent even when it is not matched. Compared with Scenario 2, 318 

Scenario 3 has a higher load power in part of the time, which is because the objective of the proposed method is to reduce 319 

the overall volatility of the load, so part of the wind-solar power is used to charge the energy storage in that time. Compared 320 

with the traditional wind-solar power directly used to meet the load, the method proposed in this paper can divide the load 321 

reduction of a single period into the reduction of multiple periods and realize the lowest fluctuation of the regional load as a 322 

whole. 323 

In order to verify the effectiveness of this paper's method for intraday scheduling, this paper forecasts the load with a time 324 

scale of 1 hour. It uses this paper's method for smoothing verification. 325 

As shown in Fig.10, the results of using LSTM to forecast each load based on historical data show that LSTM can forecast 326 

the load effectively. In operation scheduling, the next day's load can be predicted based on historical data. At the same time, 327 

the source-side output scenario is selected based on the weather, and the source-load matching strategy proposed in this 328 

paper is used to match the suppression. In the following, the forecast result of a particular day is selected to analyze the 329 

leveling. 330 

 331 

 332 
Fig.10 Load prediction results based on LSTM 333 

As shown in Fig.11, after forecasting the load on a particular day, the wind-solar power is selected to carry out source-load 334 

matching suppression, and the results of the grid-connected load power in the region are compared after the wind-solar 335 

power, and the marginal energy storage is suppressed for each load. After using the method in this paper, the overall 336 

grid-connected power of the regional load is significantly reduced. At the same time, the peak fluctuation of the load is also 337 

significantly reduced, such as between 12:00-14:00 and 16:00-20:00, the original grid-connected load there is a significant 338 

peak, there is a certain amount of pressure on the grid scheduling, and the fluctuation after the suppression of the fluctuation 339 

of the grid to reduce the negative impact of grid-connected. 340 
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 342 
Fig.11 Predictive flattening results of the regional power grid on a certain day 343 

As shown in Fig.12 is the change of SOC state of each edge energy storage after the leveling off of the forecast day; as can 344 

be shown in the figure, the matching object of the wind-solar power output on that day is the fourth load group, and after the 345 

wind-solar power output meets the load demand, the excess energy is used to charge the energy storage, so that the edge 346 

energy storage of the matched load can be kept in a good state at the end of the day. At the same time, it can be seen from the 347 

change in the SOC state of other marginal energy storage that on an unmatched day, the marginal energy storage 348 

corresponding to the load group is appropriately discharged at the peak value of load fluctuation to reduce the load 349 

fluctuation. At the same time, to avoid the load group failing to be the matched object of wind-solar power for many 350 

consecutive days, the energy storage does not release all of the stored energy at one time so that the leveling-off time of the 351 

storage is prolonged as much as possible. The utilization of the storage is improved. The energy storage will not release all of 352 

its stored energy at once to extend the leveling time and improve the utilization of energy storage as much as possible. 353 

 354 

 355 
Fig.12 Edge energy storage day SOC status 356 

Fig.13 compares grid-connected volatility before and after load suppressing of the regional grid on the forecast day; as 357 

demonstrated in the figure, the volatility of the grid-connected load after using the method of this paper is significantly 358 

reduced, avoiding the peak value of fluctuations. The grid-connected volatility of the original load has reached 0.2 many 359 
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times. In contrast, the volatility after suppressing is maintained at 0.1 or below, which verifies the effectiveness of the 360 

method of this paper for grid-connected load suppressing. 361 

 362 

 363 
Fig.13 Comparison of forecast daily volatility before and after flattening 364 

5. Conclusion 365 

This paper addresses the shortcomings of wind-solar power output in the region for load suppressing. We also consider the 366 

smoother output wind-solar power low-frequency output and source-load matching strategy for regional load smoothing. The 367 

proposed method has several significant features and contributions: 368 

(1) Framework Development**: A regional grid framework of "one source and multiple loads" is proposed. This framework 369 

effectively utilizes the low-frequency output of wind-solar power, which is more stable, to match and smooth the load 370 

fluctuations. By dividing the load into multiple groups and matching them with the source-side output, the method reduces 371 

the overall load fluctuation and the pressure on the grid-side dispatch. 372 

(2) Optimization Algorithm: The gray wolf optimization algorithm based on Tent-chaotic mapping is introduced. This 373 

algorithm enhances the global and local optimization capabilities, ensuring that the edge energy storage at each load side is 374 

optimized to minimize the overall load fluctuation. The algorithm's chaotic mapping feature helps in avoiding local optima 375 

and achieving a more robust solution. 376 

(3) Local Consumption and Grid Pressure Reduction: The method effectively promotes the local consumption of wind-solar 377 

power and reduces the pressure on grid-side dispatch. By matching the source and load, the method ensures that the 378 

renewable energy is utilized more efficiently, reducing the need for grid support and improving the overall stability of the 379 

regional power system. 380 

(4) High Complementarity Utilization: The method fully utilizes the high complementarity of wind and solar power in the 381 

low-frequency band. This complementarity helps in reducing the uncertainty and volatility of renewable energy sources, 382 

making the power output more predictable and manageable. 383 

(5) Volatility Reduction: The method significantly reduces the volatility of the regional power grid. By optimizing the 384 
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charging and discharging strategies of edge energy storage, the method ensures that the load fluctuations are minimized, 385 

reducing the difficulty of grid-side dispatch and improving the reliability of the power system. 386 

In summary, the proposed method provides a comprehensive solution to the challenges of integrating renewable energy into 387 

the grid. It not only improves the efficiency of renewable energy utilization but also enhances the stability and reliability of 388 

the power system. The method's ability to match the source and load effectively and optimize energy storage operations 389 

makes it a valuable tool for regional grid management. Future work will focus on further refining the model and exploring its 390 

application in different regional and operational contexts to maximize its potential in promoting sustainable energy use and 391 

grid stability. 392 
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